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ABSTRACT

Integer Overflow to Buffer Overflow (IO2BO) vulnerability repre-
sents a common vulnerability pattern in system software and can be
detected by various program analysis methods. Mainstream static
approaches apply taint analysis to find source-sink pairs and then
submit those suspicious bug traces to dynamic instrumentation or
static encoding.

However, previous works utilizing those methods either fail to
handle sanitization code well or cannot generalize across codebases.
In this paper, we present IntTracer, which is enhanced with inter-
val domain to model the effect of sanitization code in IO2BO bug
trace and can find recurring vulnerabilities across different code-
bases. IntTracer can prevent false positives under 8 cases while
keeping an overhead of 6.3% compared to previous work Tracer.
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1 INTRODUCTION

Integer Overflow to Buffer Overflow (IO2BO) [4] is the most preva-
lent and harmful pattern of Integer Overflow (IO) [3]. IO2BO bug
manifests in two stages. Typically, when an integer overflow oc-
curs in a variable from external input and that variable is later used
as the parameter for memory allocation functions (like malloc),
the actual allocated memory becomes significantly smaller than
expected. Subsequent operations accessing this memory may result
in amemory overflow, even facilitating severe RCE exploits [2],
with an average and maximum CVSS score of 7.32 and 9.8.
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IO can be benign [5] under certain scenarios (like crypto func-
tions), leading to a large number of false positives in bug detection.
Luckily, empirical study [19] shows that the most significant differ-
ence between IO2BO and other IO vulnerabilities lies in that opera-
tions on the overflown integer in IO2BO are often unexpected and
harmful. Based on that observation, many existing works [7, 10, 12–
14, 16, 19] choose to focus on detecting IO2BO bugs.

2 RELATEDWORK

These works typically embark on IO2BO detection with static taint
analysis, extracting the traces between integer variable inputs and
memory allocation function calls. Subsequently, based on the ap-
proaches to handling tainted traces, these endeavors are catego-
rized into dynamic instrumentation [12, 13, 19] and static encod-
ing [7, 10, 14, 16]. Despite the absence of benign IO, the detection
of IO2BO vulnerabilities still results in false positives due to the
oversight of sanitization code [13] written intentionally by pro-
grammers, as shown in Listing 1.

1 // seq/aplaymidi/aplaymidi.c:477

2 static int num_tracks;

3 static int read_smf(void) {

4 // read from unbounded user input

5 num_tracks = read_int(2);

6 // pre-conditionally sanitize num_tracks to [1, 1000]

7 if (num_tracks < 1 || num_tracks > 1000) {

8 errormsg("invalid number of tracks (%d)");

9 return 0;

10 }

11 // num_tracks * sizeof(struct track) can not overflow

12 tracks = calloc(num_tracks, sizeof(struct track));

13 }

Listing 1: IO2BO sanitization in alsa-utils-1.2.9. num_tracks

is sanitized by an if-guard (line 7) before the multiplication

and allocation (line 12), thus can not overflow at run time.

The two categories of endeavors employ different approaches to
address the challenge posed by the sanitization code. For example,
IntPatch [19] designs a binary bottom-top domain (Figure 1a) for
maintaining the taint and overflow tag and later inserts dynamic
checks when a variable with both tags is used in memory alloca-
tion. The instrumented code needs to run on each specific codebase
while the run-time environment remains a big issue. KINT [16]
encodes path and overflow conditions along the taint trace as SMT
constraints and relies on the SMT solver, while it only deals with
system-level codebase written in C. As IO2BO remains a common
bug pattern in various development scenarios (multimedia process-
ing, file parser/converter, etc.), these methods still fall short in

detecting similar IO2BO bugs across codebases.
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(a) Binary bottom-top domain

for taint and overflow

Itv ≜ Bound × Bound (1)
Bound ≜ Z +𝑚𝑎𝑥/𝑚𝑖𝑛(Bound)
Bound ≜ 𝑚𝑎𝑥/𝑚𝑖𝑛(Bound)
Bound ≜ Z + Bound × Bound

(2)

{
Bound ≜ ±∞| Z + LinearSym

LinearSym ≜
∑︁

Symbol · Z
(3)

(b) Interval domain for integer value, follow-

ing InferBO’s design and implementation

(overflow tag) I = {⊥𝑜 ,⊤𝑜 } (4)
V(𝑛) (𝑚) = V(source) (𝑚) = ⊥𝑜 (5)

(may)V(𝐸1 ⊕ 𝐸2) (𝑚) = ⊤𝑜 , if 𝑢𝑏 > 𝑢𝑏𝑒 or 𝑢𝑏 = +∞ (6)
(must not)V(𝐸1 ⊕ 𝐸2) (𝑚) = ⊥𝑜 , if 𝑢𝑏 ≤ 𝑢𝑏𝑒 (7)

where Itv(𝐸1 ⊕ 𝐸2) (𝑚) = [𝑙𝑏,𝑢𝑏]
V(𝐸1 ⊕ 𝐸2) (𝑚) = V(𝐸1) (𝑚) ⊔ V(𝐸2) (𝑚) (8)

(c) Abstract operational semantics of overflow tag generation

and propagation in binary expression, ⊕ ∈ {+, −, ×,÷, «, »}

Figure 1: Abstract domain and semantics used in IntTracer, taking overflow as an example

On top of IntPatch, Tracer [7] proposed a method for extracting
and comparing IO2BO vulnerability signatures, capable of identify-
ing recurring IO2BO vulnerabilities in different codebases. Though
Tracer has somewhat encoded sanitization code to the signature,
it blindly relies on the similarity score. For example, Tracer com-
putes the similarity score of 0.86 between Listing 1 and CVE-2017-
16612 [11], which is above the reporting threshold of 0.85, resulting
in a false positive. We even found that the bug report in grass-7.82
in Tracer’s paper was actually a false positive.

3 DESIGN

To strike a balance between sanitization code awareness and cross-
codebase analysis, we conducted an empirical study [2] of real-
world IO2BO vulnerabilities collected from previous works [13, 15,
16, 19] and historical CVEs. The study indicated that the generation,
sanitization, and propagation of overflow tags are critical to IO2BO
bug reports. However, both Tracer and IntPatch assign overflow
tags on each binary expression for safe approximation.

We then propose IntTracer (Interval-assisted Tracer), which
is an amalgamation of Tracer’s abstract domain (Figure 1a) and
InferBO’s interval domain (Figure 1b) with a more precise opera-
tional semantics from AbsIntIO [9]. The interval domain (Eq 1) is
defined as a pair of lower and upper Bound [𝑙𝑏,𝑢𝑏] to represent
the possible range of an integer variable. Bound is both recursively
(Eq 2) and linearly (Eq 3) defined to support inter-procedural and
symbolic analysis. IntTracer performs the interval analysis along
with taint analysis and uses interval value to check the generation,
sanitization, and propagation of overflow tag (Eq 4).

As for constant or integer from external input (Eq 5), IntTracer
initiates them with no overflow tag. When handling binary expres-
sion, IntTracer assigns an overflow tag only when the interval
valuemay (Eq 6) exceed its expected range, removes tagwhen the in-
terval valuemust not (Eq 7) exceed the expected range and joins tags
by default (Eq 8). The expected range [𝑙𝑏𝑒 , 𝑢𝑏𝑒 ] of an integer vari-
able is obtained from its integer type width, e.g. [INT_MIN, INT_MAX]
for int num_tracks in Listing 1. IntTracer also designs a sym-
metric check scheme for integer underflow. These checks can be
divided into two categories, corresponding to sanitization code
occurring before and after the overflow behavior respectively:
• Pre-check Apply Eq 6, Eq 7, and Eq 8 to each binary expression
and their child expression recursively.

• Post-check Apply Eq 7 to each memory allocation argument.

As for other instructions, IntTracer propagates the tags by
doing join and widen operations on the domain in Figure 1a.

4 EVALUATION

IntTracer is implemented on top of Tracer [7] with two kinds of
checks in ∼600 lines of OCaml code. The interval analysis com-
ponent is supported by InferBO [18] checker in Facebook’s Infer
analyzer [1]. We have made some minor adjustments to achieve
higher interval precision and make it consistent with Figure 1c.

To evaluate its ability to detect cross-codebase vulnerability, we
manually select 47 C/C++ OpenWrt packages in 8 development ar-
eas, together with 273 Debian packages in Tracer’s evaluation as the
dataset. Theoretically, IntTracer can support any programming
languages (like Obj-C and Java) adopted by Infer’s front-end.

• RQ1: IO2BODetection and Overhead IntTracer has detected
all 5 CVEs found by Tracer on Debian packages, as true posi-
tives. Besides, IntTracer has discovered 3 new IO2BO bugs in
nmap-7.93 and syslog-ng-4.2.0, all of which have been fixed by
developers. 2 of the newly detected bugs are similar to historical
CVEs from packages in different categories. The average analysis
overhead (6.3%) that comes from the two checks is acceptable.

• RQ2: False Positive Reduction IntTracer has successfully
avoided 8 IO2BO bug reports from different packages (nmap-
7.93, alsa-utils-1.2.9, ipmitool-1.8.18, ImageMagick-7.0.9-5, monit-
5.26.0), including the motivating example in Listing 1, while
Tracer reports them all as false positives.

5 CONCLUSION AND EXPECTATION

In this work, we present the prototype of IntTracer, a sanitization-
aware IO2BO bug detection tool, which can detect vulnerabilities
across codebases while largely reducing false positives.

The design behind IntTracer can also be applied to detecting
Buffer Overflow [8] and integer-related logical bugs [6, 17]. The fu-
ture works are (1) modeling sources and sinks for new vulnerability
types in taint analysis, (2) conducting larger-scale experiments on
different codebases, and (3) validating the exploitability of IO2BO
bugs and updating the vulnerability signature database.
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