
IntTracer: Sanitization-aware IO2BO Vulnerability Detection
across Codebases

Xiang Chen
Shanghai Jiao Tong University

Shanghai, China
cascades@sjtu.edu.cn

ABSTRACT

Integer Overflow to Buffer Overflow (IO2BO) vulnerability repre-
sents a common vulnerability pattern in system software and can be
detected by various program analysis methods. Mainstream static
approaches apply taint analysis to find source-sink pairs and then
submit those suspicious bug traces to dynamic instrumentation or
static encoding.

However, previous works utilizing those methods either fail to
handle sanitization code well or cannot generalize across codebases.
In this paper, we present IntTracer, which is enhanced with inter-
val domain to model the effect of sanitization code in IO2BO bug
trace and can find recurring vulnerabilities across different code-
bases. IntTracer can prevent false positives under 8 cases while
keeping an overhead of 6.3% compared to previous work Tracer.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

Integer Overflow, Taint Analysis, Recurring Vulnerability, Interval
Analysis

ACM Reference Format:

Xiang Chen. 2024. IntTracer: Sanitization-aware IO2BO Vulnerability
Detection across Codebases. In 2024 IEEE/ACM 46th International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion ’24), April
14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3639478.3641223

1 INTRODUCTION

Integer Overflow to Buffer Overflow (IO2BO) [4] is the most preva-
lent and harmful pattern of Integer Overflow (IO) [3]. IO2BO bug
manifests in two stages. Typically, when an integer overflow oc-
curs in a variable from external input and that variable is later used
as the parameter for memory allocation functions (like malloc),
the actual allocated memory becomes significantly smaller than
expected. Subsequent operations accessing this memory may result
in amemory overflow, even facilitating severe RCE exploits [2],
with an average and maximum CVSS score of 7.32 and 9.8.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0502-1/24/04. . . $15.00
https://doi.org/10.1145/3639478.3641223

IO can be benign [5] under certain scenarios (like crypto func-
tions), leading to a large number of false positives in bug detection.
Luckily, empirical study [19] shows that the most significant differ-
ence between IO2BO and other IO vulnerabilities lies in that opera-
tions on the overflown integer in IO2BO are often unexpected and
harmful. Based on that observation, many existing works [7, 10, 12–
14, 16, 19] choose to focus on detecting IO2BO bugs.

2 RELATEDWORK

These works typically embark on IO2BO detection with static taint
analysis, extracting the traces between integer variable inputs and
memory allocation function calls. Subsequently, based on the ap-
proaches to handling tainted traces, these endeavors are catego-
rized into dynamic instrumentation [12, 13, 19] and static encod-
ing [7, 10, 14, 16]. Despite the absence of benign IO, the detection
of IO2BO vulnerabilities still results in false positives due to the
oversight of sanitization code [13] written intentionally by pro-
grammers, as shown in Listing 1.

1 // seq/aplaymidi/aplaymidi.c:477

2 static int num_tracks;

3 static int read_smf(void) {

4 // read from unbounded user input

5 num_tracks = read_int(2);

6 // pre-conditionally sanitize num_tracks to [1, 1000]

7 if (num_tracks < 1 || num_tracks > 1000) {

8 errormsg("invalid number of tracks (%d)");

9 return 0;

10 }

11 // num_tracks * sizeof(struct track) can not overflow

12 tracks = calloc(num_tracks, sizeof(struct track));

13 }

Listing 1: IO2BO sanitization in alsa-utils-1.2.9. num_tracks

is sanitized by an if-guard (line 7) before the multiplication

and allocation (line 12), thus can not overflow at run time.

The two categories of endeavors employ different approaches to
address the challenge posed by the sanitization code. For example,
IntPatch [19] designs a binary bottom-top domain (Figure 1a) for
maintaining the taint and overflow tag and later inserts dynamic
checks when a variable with both tags is used in memory alloca-
tion. The instrumented code needs to run on each specific codebase
while the run-time environment remains a big issue. KINT [16]
encodes path and overflow conditions along the taint trace as SMT
constraints and relies on the SMT solver, while it only deals with
system-level codebase written in C. As IO2BO remains a common
bug pattern in various development scenarios (multimedia process-
ing, file parser/converter, etc.), these methods still fall short in

detecting similar IO2BO bugs across codebases.

https://doi.org/10.1145/3639478.3641223
https://doi.org/10.1145/3639478.3641223
https://doi.org/10.1145/3639478.3641223

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Xiang Chen

𝑇 overflow
taint = (⊤,⊤)

𝑇 normal
taint
(⊤,⊥)

𝑇 overflow
clean
(⊥,⊤)

𝑇 normal
clean = (⊥,⊥)

(a) Binary bottom-top domain

for taint and overflow

Itv ≜ Bound × Bound (1)
Bound ≜ Z +𝑚𝑎𝑥/𝑚𝑖𝑛(Bound)
Bound ≜ 𝑚𝑎𝑥/𝑚𝑖𝑛(Bound)
Bound ≜ Z + Bound × Bound

(2)

{
Bound ≜ ±∞| Z + LinearSym

LinearSym ≜
∑︁

Symbol · Z
(3)

(b) Interval domain for integer value, follow-

ing InferBO’s design and implementation

(overflow tag) I = {⊥𝑜 ,⊤𝑜 } (4)
V(𝑛) (𝑚) = V(source) (𝑚) = ⊥𝑜 (5)

(may)V(𝐸1 ⊕ 𝐸2) (𝑚) = ⊤𝑜 , if 𝑢𝑏 > 𝑢𝑏𝑒 or 𝑢𝑏 = +∞ (6)
(must not)V(𝐸1 ⊕ 𝐸2) (𝑚) = ⊥𝑜 , if 𝑢𝑏 ≤ 𝑢𝑏𝑒 (7)

where Itv(𝐸1 ⊕ 𝐸2) (𝑚) = [𝑙𝑏,𝑢𝑏]
V(𝐸1 ⊕ 𝐸2) (𝑚) = V(𝐸1) (𝑚) ⊔ V(𝐸2) (𝑚) (8)

(c) Abstract operational semantics of overflow tag generation

and propagation in binary expression, ⊕ ∈ {+, −, ×,÷, «, »}

Figure 1: Abstract domain and semantics used in IntTracer, taking overflow as an example

On top of IntPatch, Tracer [7] proposed a method for extracting
and comparing IO2BO vulnerability signatures, capable of identify-
ing recurring IO2BO vulnerabilities in different codebases. Though
Tracer has somewhat encoded sanitization code to the signature,
it blindly relies on the similarity score. For example, Tracer com-
putes the similarity score of 0.86 between Listing 1 and CVE-2017-
16612 [11], which is above the reporting threshold of 0.85, resulting
in a false positive. We even found that the bug report in grass-7.82
in Tracer’s paper was actually a false positive.

3 DESIGN

To strike a balance between sanitization code awareness and cross-
codebase analysis, we conducted an empirical study [2] of real-
world IO2BO vulnerabilities collected from previous works [13, 15,
16, 19] and historical CVEs. The study indicated that the generation,
sanitization, and propagation of overflow tags are critical to IO2BO
bug reports. However, both Tracer and IntPatch assign overflow
tags on each binary expression for safe approximation.

We then propose IntTracer (Interval-assisted Tracer), which
is an amalgamation of Tracer’s abstract domain (Figure 1a) and
InferBO’s interval domain (Figure 1b) with a more precise opera-
tional semantics from AbsIntIO [9]. The interval domain (Eq 1) is
defined as a pair of lower and upper Bound [𝑙𝑏,𝑢𝑏] to represent
the possible range of an integer variable. Bound is both recursively
(Eq 2) and linearly (Eq 3) defined to support inter-procedural and
symbolic analysis. IntTracer performs the interval analysis along
with taint analysis and uses interval value to check the generation,
sanitization, and propagation of overflow tag (Eq 4).

As for constant or integer from external input (Eq 5), IntTracer
initiates them with no overflow tag. When handling binary expres-
sion, IntTracer assigns an overflow tag only when the interval
valuemay (Eq 6) exceed its expected range, removes tagwhen the in-
terval valuemust not (Eq 7) exceed the expected range and joins tags
by default (Eq 8). The expected range [𝑙𝑏𝑒 , 𝑢𝑏𝑒] of an integer vari-
able is obtained from its integer type width, e.g. [INT_MIN, INT_MAX]
for int num_tracks in Listing 1. IntTracer also designs a sym-
metric check scheme for integer underflow. These checks can be
divided into two categories, corresponding to sanitization code
occurring before and after the overflow behavior respectively:
• Pre-check Apply Eq 6, Eq 7, and Eq 8 to each binary expression
and their child expression recursively.

• Post-check Apply Eq 7 to each memory allocation argument.

As for other instructions, IntTracer propagates the tags by
doing join and widen operations on the domain in Figure 1a.

4 EVALUATION

IntTracer is implemented on top of Tracer [7] with two kinds of
checks in ∼600 lines of OCaml code. The interval analysis com-
ponent is supported by InferBO [18] checker in Facebook’s Infer
analyzer [1]. We have made some minor adjustments to achieve
higher interval precision and make it consistent with Figure 1c.

To evaluate its ability to detect cross-codebase vulnerability, we
manually select 47 C/C++ OpenWrt packages in 8 development ar-
eas, together with 273 Debian packages in Tracer’s evaluation as the
dataset. Theoretically, IntTracer can support any programming
languages (like Obj-C and Java) adopted by Infer’s front-end.

• RQ1: IO2BODetection and Overhead IntTracer has detected
all 5 CVEs found by Tracer on Debian packages, as true posi-
tives. Besides, IntTracer has discovered 3 new IO2BO bugs in
nmap-7.93 and syslog-ng-4.2.0, all of which have been fixed by
developers. 2 of the newly detected bugs are similar to historical
CVEs from packages in different categories. The average analysis
overhead (6.3%) that comes from the two checks is acceptable.

• RQ2: False Positive Reduction IntTracer has successfully
avoided 8 IO2BO bug reports from different packages (nmap-
7.93, alsa-utils-1.2.9, ipmitool-1.8.18, ImageMagick-7.0.9-5, monit-
5.26.0), including the motivating example in Listing 1, while
Tracer reports them all as false positives.

5 CONCLUSION AND EXPECTATION

In this work, we present the prototype of IntTracer, a sanitization-
aware IO2BO bug detection tool, which can detect vulnerabilities
across codebases while largely reducing false positives.

The design behind IntTracer can also be applied to detecting
Buffer Overflow [8] and integer-related logical bugs [6, 17]. The fu-
ture works are (1) modeling sources and sinks for new vulnerability
types in taint analysis, (2) conducting larger-scale experiments on
different codebases, and (3) validating the exploitability of IO2BO
bugs and updating the vulnerability signature database.

6 ACKNOWLEDGEMENT

This paper is under Prof. Yue Wu’s supervision and supported by
the National Key R&D Program of China (No.2020YFB1807504).

https://github.com/cascades-sjtu/tracer-infer
https://gist.github.com/cascades-sjtu/be65fb45a8ff94762dbf9037ddaff09d

IntTracer: Sanitization-aware IO2BO Vulnerability Detection across Codebases ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES

[1] Cristiano Calcagno and Dino Distefano. 2011. Infer: An Automatic Program
Verifier for Memory Safety of C Programs. In Proceedings of the Third International
Conference on NASA Formal Methods (Pasadena, CA) (NFM’11). Springer-Verlag,
Berlin, Heidelberg, 459–465.

[2] Xiang Chen. 2023. Real-world CWE680: Integer Overflow to Buffer Overflow (IO2BO)
vulnerability collections. GitHub. https://github.com/cascades-sjtu/rw-io2bo

[3] The MITRE Corporation. 2023. CWE-190: Integer Overflow or Wraparound. The
MITRE Corporation. Retrieved October 26, 2023 from https://cwe.mitre.org/
data/definitions/190.html

[4] The MITRE Corporation. 2023. CWE-680: Integer Overflow to Buffer Overflow.
The MITRE Corporation. Retrieved October 26, 2023 from https://cwe.mitre.org/
data/definitions/680.html

[5] Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2012. Understanding Integer
Overflow in C/C++. In Proceedings of the 34th International Conference on Software
Engineering (ICSE ’12). IEEE Press, Zurich, Switzerland, 760–770.

[6] Horn Jann. 2024. Linux 5.6 io_uring Cred Refcount Overflow. packet
storm. https://packetstormsecurity.com/files/176649/Linux-5.6-io_uring-Cred-
Refcount-Overflow.html

[7] Wooseok Kang, Byoungho Son, and Kihong Heo. 2022. TRACER: Signature-Based
Static Analysis for Detecting Recurring Vulnerabilities. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security (Los Angeles,
CA, USA) (CCS ’22). Association for Computing Machinery, New York, NY, USA,
1695–1708. https://doi.org/10.1145/3548606.3560664

[8] Andreas D. Kellas, Alan Cao, Peter Goodman, and Junfeng Yang. 2023. Divergent
Representations: When Compiler Optimizations Enable Exploitation. In 2023
IEEE Security and Privacy Workshops (SPW). 337–348. https://doi.org/10.1109/
SPW59333.2023.00035

[9] Alexander Küchler, Leon Wenning, and Florian Wendland. 2023. AbsIntIO:
Towards Showing the Absence of Integer Overflows in Binaries Using Abstract
Interpretation. In Proceedings of the 2023 ACM Asia Conference on Computer and
Communications Security (Melbourne, VIC, Australia) (ASIA CCS ’23). Association
for Computing Machinery, New York, NY, USA, 247–258. https://doi.org/10.
1145/3579856.3582814

[10] Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and Martin Rinard. 2014.
Sound Input Filter Generation for Integer Overflow Errors. In Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(San Diego, California, USA) (POPL ’14). Association for Computing Machinery,
New York, NY, USA, 439–452. https://doi.org/10.1145/2535838.2535888

[11] MITRE. 2017. CVE-2017-16612 Detail. NVD. https://nvd.nist.gov/vuln/detail/CVE-
2017-16612

[12] Marios Pomonis, Theofilos Petsios, Kangkook Jee, Michalis Polychronakis, and
Angelos D. Keromytis. 2014. IntFlow: Improving the Accuracy of Arithmetic
Error Detection Using Information Flow Tracking. In Proceedings of the 30th
Annual Computer Security Applications Conference (New Orleans, Louisiana, USA)
(ACSAC ’14). Association for ComputingMachinery, New York, NY, USA, 416–425.
https://doi.org/10.1145/2664243.2664282

[13] Hao Sun, Xiangyu Zhang, Chao Su, and Qingkai Zeng. 2015. Efficient Dynamic
Tracking Technique for Detecting Integer-Overflow-to-Buffer-Overflow Vul-
nerability. In Proceedings of the 10th ACM Symposium on Information, Com-
puter and Communications Security (Singapore, Republic of Singapore) (ASIA
CCS ’15). Association for Computing Machinery, New York, NY, USA, 483–494.
https://doi.org/10.1145/2714576.2714605

[14] Hao Sun, Xiangyu Zhang, Yunhui Zheng, and Qingkai Zeng. 2016. IntEQ: Rec-
ognizing Benign Integer Overflows via Equivalence Checking across Multiple
Precisions. In Proceedings of the 38th International Conference on Software Engi-
neering (Austin, Texas) (ICSE ’16). Association for Computing Machinery, New
York, NY, USA, 1051–1062. https://doi.org/10.1145/2884781.2884820

[15] Wang Tielei, Wei Tao, Lin Zhiqiang, and Zou Wei. 2009. IntScope:
Automatically Detecting Integer Overflow Vulnerability in X86 Bi-
nary Using Symbolic Execution. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2009, San Diego, Califor-
nia, USA, 8th February - 11th February 2009. The Internet Society, USA.
https://www.ndss-symposium.org/ndss2009/intscope-automatically-detecting-
integer-overflow-vulnerability-in-x86-binary-using-symbolic-execution/

[16] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M. Frans Kaashoek.
2012. Improving Integer Security for Systemswith KINT. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation (Hollywood,
CA, USA) (OSDI’12). USENIX Association, USA, 163–177.

[17] Wikipedia. 2024. Year 2038 problem. Wikipedia. https://en.wikipedia.org/wiki/
Year_2038_problem

[18] Kwangkeun Yi. 2017. Inferbo: Infer-based buffer overrun analyzer. Meta Research.
Retrieved Feburary 6, 2023 from https://research.facebook.com/blog/2017/02/
inferbo-infer-based-buffer-overrun-analyzer/

[19] Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou. 2010. IntPatch: Au-
tomatically Fix Integer-Overflow-to-Buffer-Overflow Vulnerability at Compile-
Time. In Proceedings of the 15th European Conference on Research in Computer Se-
curity (Athens, Greece) (ESORICS’10). Springer-Verlag, Berlin, Heidelberg, 71–86.
https://doi.org/10.5555/1888881.1888888

https://github.com/cascades-sjtu/rw-io2bo
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/680.html
https://cwe.mitre.org/data/definitions/680.html
https://packetstormsecurity.com/files/176649/Linux-5.6-io_uring-Cred-Refcount-Overflow.html
https://packetstormsecurity.com/files/176649/Linux-5.6-io_uring-Cred-Refcount-Overflow.html
https://doi.org/10.1145/3548606.3560664
https://doi.org/10.1109/SPW59333.2023.00035
https://doi.org/10.1109/SPW59333.2023.00035
https://doi.org/10.1145/3579856.3582814
https://doi.org/10.1145/3579856.3582814
https://doi.org/10.1145/2535838.2535888
https://nvd.nist.gov/vuln/detail/CVE-2017-16612
https://nvd.nist.gov/vuln/detail/CVE-2017-16612
https://doi.org/10.1145/2664243.2664282
https://doi.org/10.1145/2714576.2714605
https://doi.org/10.1145/2884781.2884820
https://www.ndss-symposium.org/ndss2009/intscope-automatically-detecting-integer-overflow-vulnerability-in-x86-binary-using-symbolic-execution/
https://www.ndss-symposium.org/ndss2009/intscope-automatically-detecting-integer-overflow-vulnerability-in-x86-binary-using-symbolic-execution/
https://en.wikipedia.org/wiki/Year_2038_problem
https://en.wikipedia.org/wiki/Year_2038_problem
https://research.facebook.com/blog/2017/02/inferbo-infer-based-buffer-overrun-analyzer/
https://research.facebook.com/blog/2017/02/inferbo-infer-based-buffer-overrun-analyzer/
https://doi.org/10.5555/1888881.1888888

	Abstract
	1 Introduction
	2 Related Work
	3 Design
	4 Evaluation
	5 Conclusion and Expectation
	6 Acknowledgement
	References

